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Abstract The problem of generalization by single-layer perceptrons is studied in the case of 
time-dependent rules. Lower bounds for the generalization ermrs within the ‘single presentation 
of examples’ case are obtained for randomly drifting d e s .  These bounds suggest a learning 
alprithm which uses knowledge of the error ifself. Since this error is not readily availabie 
it has to be estimated thmugh a mechanism of selfevaluation. The capacity of incarporating 
recency information into the error estimate 1s highly desirable. The mechanism pmpased has 
the advantage. beyond good perfomance. of being self-adaptive. in the =se that it adjusn to 
changes in the unknown drift rate of the rule. The performance of the rule is also studied for 
sudden changes in an attempt to mimic the so-called Wisconsin test. 

1. Introduction 

In an ever-changing environment the ability of organisms to present adaptive behaviour 
might be an important factor in determining their chances of survival. Thriving under a 
randomly varying set of rules will depend on the capacity of incorporating useful information 
from the outside world. Such adaptive behaviour can be modelled within supervised leaming 
in neural nets. Perceptron learning of a timedependent rule has been recently studied by 
Biehl and Schwarze [I] in the case where there is a single presentation of the examples. 
We discuss again this type of problem with the aim of determining what is the optimal way 
in which the information fmm the changing environment (‘professor’ or ‘rule’) can be used 
by a single-layer perceptron in order to maximize its generalization ability. 

The natural approach to this problem is ‘on-line’ learning. This means that the examples 
are used only once and not repeatedly (‘iterated learning’) until some error m e ”  over 
all examples is minimized. Iterated laming might not be efficient if old examples are 
presented again at a later time when they are not any longer representative of the state of 
the rule. Furthermore, single presentation might also be quite efficient, since in the optimal 
case (expected stability algorithm) for a static rule it leads [2] to only exactly twice the error 
of the Bayes limit of Opper and Haussler [3], with just a small fraction of the computational 
effort. 

In section 2 the model [l] and notation are introduced. For a randomly drifting rule 
we obtain in section 3 the result that, analogously to the time-independent case, suprises 
carry a high information content, and should be attributed a high weight, while very small 
importance must be given to obvious facts. More specifically, we obtain an expression for 
the weight a Hebbian term must have in order to maximize generalization. Examples ‘easy’ 
to classify by the student ‘net are those with a high local field at the perceptron’s output 
unit. When an ‘easy’ example is misclassified it receives a very high weight and a very 
small one when it is correctly classified. Also in section 3 we present lower bounds for the 
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generalization error as a function of T, where T is a measure of the amplitude of the white 
noise driving the nile. Calling, as usual, U the ratio of the number of pattems to the number 
of input units. we obtain that, for 01 + M and small T, the saturation generalization error 
for optimal leaming grows as Til3, while being proportional to T’I4 in the optimal pure 
Hebbian case [l]. The strategy of learning by ‘queries’ (‘selection of examples’) [4, 101 is 
also analysed. 

These bounds can be reached by a learning algorithm which uses the value of the 
generalization error itself. Since this is not a very realistic feature, we propose in section 4 
a new self-adaptive algorithm which relies on the estimate of the generalization error, as 
judged by recent success. Several estimators can be considered and we discuss the effects 
on learning of a parameter which measures the persistence of old examples in the actual 
estimator. Results of simulations are presented for the case of slowly drifting rule as well as 
for the so-called Wisconsin test [SI, where the rule is piecewise constant in time. Section 5 
comprises some concluding remarks. 

2. The model 

We now examine the problem of learning a time-dependent linearly separable rule within 
an exactly solvable model. ~A singlelayer, single-output unit perceptron, the ‘student’, 
leams from examples generated by another such perceptron, the ‘professor’, whose synaptic 
weights change randomly in time. Let N be the number of inputs, S E (-1. l)N and 
B E heN or ( - I / f i ,  I / f i ) N  the input vector andthe professor synaptic coupling vector, 
respectively. The correct (professor) output is . 
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The student is described by a synaptic vector J E RN and its output is 

The generalization ability is defined as the probabilty that at a given time the outputs 
of both the professor and student nets be equal. The synaptic vector J is to be constructed 
from the information contained in the examples, that is, a sequence of pairs (9, a;), where 
& is the time label or the example position in the sequence. 

We first consider, as did Biehl and Schwarze [I], a time evolution of the nile 

B” = B”-’ + ( I / v % ) q p  (31 
where qp is a random vector satisfying 

hfrlj”, (2/N)T&j& (4) 
and we keep the professor norm B” constant equal to 1 by imposing the condition 

Thus 
(5) 

(6) 
where T is the drift parameter. As usual the overlap between B and J is the relevant 
quantity 16, IO] 

(7) 

&E’-’ . q P  = -?. 0. ‘1p = -T .  
2‘1 

B” . B p - ‘  = 1 - TIN 

pfl = Rp/J‘  R’ BII . J @  Jfls 
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since the generalization ability C, the generalization error eG and p are related through 

ec = I - G = (l/lr) cos-' p' (8 )  

where self average has been assumed. We will use the notation 

for the local field and output of the teacher for the pth example. Our notation is such that 
the professor changes from B,-' to B' only after the presentation of the pth example. 
Also 

are the normalized local field and the output of the student. The local stabilty of a given 
example, before it is used to modify J, is 

A, h,ui (11)  

and the example is correctly classified if A, is positive. The calculations will also involve 
a Gardner-like parameter related to the stability on the professor 

3. Lower bounds on the generalization errors 

The learning dynamics that we study has the form 

where Sa, is a decay term and W, is the weight of the Hebbian term. These two quantities 
depend on the particular example, and our objective is to determine the best possible weight 
in order to optimize generalization. The last term takes into account possible white noise 
in the synaptic couplings, but its overall effect is just to increase the amplitude of the drift 
parameter T by $(:. :). The JF-I factor is included to simplify further developments. 
With this notation, W, = 1/Jfl-' for the simple Hebb rule, W, = K - A, for the Adaline 
algorithm and W, = (K - A,)@(K - A,) for the relaxation algorithm, with K a positive 
constant [9]. We now follow closely the method of [2]. In the thermodynamic limit 
N + bo, a = p/N,  the learning dynamics can be written as a differential equation, which 
after being averaged over all the possible histories, leads to 

(14) 
- = p ( ( w , ( K , - A , ) - ~ W ~ ) - T )  dp 
dcl 

for the overlap. 
The evolution of the length of the synaptic vector J is given by 

(15) 

The choice of Sa, = W,A, + :W; + T gives a local method to keep the norm of J 
constant. Nevertheless, this needs a priori knowledge about .T. 

Note that the decay term Sa, is absent from the equation for p. Then, if W, does not 
depend on J''-', the two differential equations are decoupled and the decay term does not 

d J  
-= J (W'gA, + $W; - a,) + T). da 
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affect the performance (in contrast with the simple Hebb case [I] where W, = l / P - '  and 
the two equations are coupled). 

The choice of the weight function W, is made by demanding that the gain per example, 
e.g. dp Ida, be maximum, with the restriction that it can only depend on b, through its 
sign. Not suprisingly the resulting weight function is the same as in 121 

(16) 

where the triangular brackets (...)= denote the expected value calculated with the 
conditional probability distribution of Ib,l given U: and h,, thus the abbreviation ES for 
expected stabilty. Therefore, the maximum average gain per example can be calculated 
from 
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W,"" = (K,)B - An 

where 

Up to now the probabilty distribution of the examples P(S) from which P(u:, h,) is 
obtained has not been chosen. It reflects the strategy in the choice of the learning examples. 
Two strategies have been considered in the literature [3,4,6, lo]: parsive learning, that is, 
learning from random examples with a uniform distribuition, which leads to b, and h, 
being normal Gaussian variables with correlation p; active learning (learning by 'selection 
of examples' or 'queries') where the student demands the answer to the 'hardest to classify' 
examples. In this case the ES average is performed over P(lb,l I h, = 0). 

In the case of passive learning the weight function is [2] 

where 

A =  
P 

and 

With this weight W the function I appearing in equation (18) is 

As a + 03 the error stops decreasing. The saturation error e? will increase as T', 
with an exponent L characteristic of the algorithm and learning strategy. The error e g ( T )  
is obtained from equation (20) and from 

I(Am) = T .  (23) 
For small T 

1 e? Y -Am = CT'l3 (W H 
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where the constant C is given by 

This z = j should be compared to the z = $ exponent of the optimal Hebb case of 
reference [I]. For-the selection of exwples strategy, we have 

and 
A2 

I ( A )  = - 
H 

The assymptotic value of the error in this case is 

(28) 
1 e? = -tan-' 43 
Yr 

leading to z = f . ~ . .~ 

The exponent z is not independent of the generalization exponent x which characterizes 

ec cx a-' . (2% 

the behaviour of eG for T = Oand large (Y 

To show this we proceed as follows. For small. T and large (Y (small A) we have in 
general 

(30) - dp = p ( c ~ ( T ) A " ' + c ~ ( T ) A " ' f . . . - T )  
da 

where c1 and cz may depend on T. Also nl < n2, and if cl(T = 0) # 0 then nl = l/r, 
giving the relation 

This can be seen by inserting the assymptotic trial solution (for T = 0) 

p = 1 - K ( Y - ~  (32) 

a-2r-I a-x/z (33) 

where K is some positive constant, into the differential equation leading to 

from which we obtain relation (31). The case z = 4 (x  --t 03) 'indicates an exponential 
error decay obtained with the learning strategy of 'selection of examples' (see [21). 

If cl(T = 0) = 0 then one can only say that 
1 1  - ~ > - - 2 .  
x z  (34) 

The bounds on the generalization error eG(a) obtained by numerically integrating 
equation (17) with the apropriate weight function are 'shown in figure 1 for T = 0.5. 
Also the results for the optimal Hebb are presented for comparison. This algorithm q u i r e s  
the knowledge of the value of the drift parameter and uses an optimal weight decay Q ( T )  
for the simple Hebb rule. The saturation error is larger in the case of random uniform 
examples, while in the case of selection of examples the two errors are the same. This 
result should be compared with that of [I], bearing in mind that we start from tabula rasa 
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0.45 0 . 5 7 4  

0.25- 
0 1 2 3 4 5 

CL 

Figure 1. Lower bounds for the generalization enor e&) obtained fmm the integration of 
equation (17) with W of the expected stability algorithm. passive learning (dashed curve) and 
active leaming (solid curve). Simulation results for the simple Hebb (circles). Optimal Hebb for 
passive leaming (squares), and optimal Hebb with selection of examples (stars) both for lubuln 
rum and staling from J = 1 [I]. Simulations s w i n g  from fabulu rum (lower curves) reach 
the limit faster than from J = 1. Average over 50 NN. N = 149, 

0.05 1 I 
0- 

0 0.1 0.2 0.3 0.4 0.5 0.6 
T 

Figure 2. Asymptotic generalization emf  ec(T) from equation (23) as a function of the noise 
pasamerer 7. Passive ieaming optimal Hebb [I] (short-dashed curve), expected slability (solid 
curve) and simulation results, N = 149, average over 50 Nns (circles). Active leaning (long- 
dashed curve). 

while they use J = 1 as the initial condition and so their approach to the limit will be 
slower. 

In figure 2 our results for the assymptotic errors e g ( T )  are shown, as well as the ones 
for the algorithm of [I]. Also the selection of examples strategy (lower curves) errors are 
shown, being the same for both algorithms. 

Since the optimal weight function W,” depends on p, the algorithm cannot be 
implemented without knowledge of the drift parameter T, which is needed to integrate 
equation (17). As it stands it only provides lower bounds on the average generalization 
errors. Of course, we can use in the weight function a value p, measured during the 
simulation to obtain an optimal ‘benchmark’ curve, against which other algorithms will be 
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compared. We will call this procedure the ‘benchmark‘ algorithm. In the next section we 
 will^ study a self-adaptive algorithm that uses an estimate of the overlap p and performs 
very well without knowledge of the noise level. 

4. Self-adaptive algorithm 

We now turn to a practical implementation of these ideas. First notice that, by equation 
(20). the optimal weight function can be written as 

This suggests that we consider the neural net as endowed with a self-evaluation system 
which is used to estimate the generalization error, or more specifically t a n ( H e G ) ,  by the 
results, failures or successes on the previous examples. The self-evaluator mechanism 
integrates over a range of time and two competing factors have to be considered. If the 
integration time is too large, then it will remember results which are no longer meaningful 
and its estimation will lag the actual value of e C .  I f~i t  is too short, it will have no time to 
accumulate a significant statistics. We will consider an exponential loss of information of 
old examples and look at the following evaluator: 

- - ( I - - ; ) - IFPI)  eG +--E,. ~ ; 
Here o is the inverse integration time or recency span, and cF = (1 -uiu,”) 12, which 
is (one) zero if the last example was (in)correctly classified. Since the tangent diverges at 
~ 1 2 ,  it is not very precise to estimate the tangent factor of equation (35) by just calculating 
the tangent of I.;:’, and we instead use as estimators the truncated power series expansions 

i k  = t&(HeG)k = H;G f f(Jr&)3 + $(n&)5 + ‘. ’ + C X ( H Z G ) ’ .  (37) 
In figure 3 we judge the different estimators by comparing them to the benchmark value 

in a simulation. The third power estimator ,& is seen to be the best. In figure 4 the rule is 
fixed for 01 < 5 and 01 > 15, while it drifts with T = 0.2 in between. The perfomance of 

\ 
b 

****-**f.******* ai 
0 
0 1 2 3 4 5 

a 

Figure 3. Performance of the different evaluators ((U = 2). 11 - {G/eol, wh? 2~ is the 
generalization ~ R O I  for the following evaluators: tangent (diamond), a, (squares), 1 3  (circles). 
A5 (uiangles), A7 (star), and eG is the benchmark algorithm generalization error. 
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0.4 I I I 
? 

0.35 

0.3 1 1 
a? 0.25 

0.2 

a15 

0.1 
0 5 ~ 10 ,;j 20 

a 
Figure 4. Performance of the ,& algorithm for different values of W. The rule is fixed until 
01 = 5 . then it drifts until U = 15. with a noise parameter 7 = 0.2. w = 0.2 (circles). w = 2 
(squares). (U = 20 (triangles), o = N (diamond), benchmark (solid curve). N = 99, average 
over 50 runs. 

a5 

0.4 

a3 
dB 

0.2 

0.1 

0 
0 1 2 3 4 5 6 7 8 9 1 0  

a 

Figure 5. Generalization error for different levels of noise. Self-adaptive algorithm with the 
A)(iu = 2) evaluator (circles) from a s~mulation with N = 149. averaged over 50 N n S  and 
for the lower bounds (solid cwe).  From the lower curve to the top for 7 = 0,0.05.0.2,0.5, 
respectively. 

the i j  estimator is measured for different values of w and a good choice is seen to lie near 
the value OJ = 2. 

In figure 5 the results of a simulation are shown for an algorithm which uses the best 
estimator (&) with OJ = 2. This is a realistic algorithm, since neither the drift parameter nor 
the value of the overlap p are needed. It is seen to work quite well since it approximates the 
lower bounds very efficiently for different drift rates. This in fact means that the algorithm 
is self-adaptive, a fact which can be better seen in figure 6 where the rule is fixed until 
a = 5, performs a random walk with T = 0.2 until a = 15, after which it remains fixed 
again. 

We also have performed the so-called Wisconsin test [5]. In this situation the rule 
suddenly changes and the adaptation of the student to the new environment is analysed. In 
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0 5 10 15 ’ 20 
a 

Figure 6. Performance of aifferent algorithms for changing drifts. For 01 < 5 and 01 > 15, T = 0 
and in between 7 f 0.2. Simple Hebb (squares), oplimal Hebb (I~iangles), self-adaptive 
algorithm with the A ~ ( u  = 2) (circles) and the benchmark (solid curve). N = 99, avenge 
over 50 runs. 

0 5 10 1 5 ~  20 25 
CL 

Figure 7. The Wisconsin test the tule is piecewise constant in time. It suddenly changes at 
U = 10.15.20. The dotted curve is lhe genedimtion ability of the simple Hebb algorithm. It 
is quite efficient at the begining, but is ven  slow in adapting to a new rule. The dashed curve 
is obtained for the self-adaptive algorithm with the = 2) evalumr. The solid curve is 
obtained using the measured value of p (benchmark algorithm). 

figure 7 the performance of our algorithm in the Wisconsin test is compared with the simple 
Hebb rule, and can be seen to be significantly better. 

The failure to use the optimal algorithm might be thougth of as a lesion to the laming 
mechanism of a neural net. Althougth by using the simple Hebb algorithm a perceptron 
can learn the first rule, it will have a great difficulty to detect a rule change. A similar 
behaviour has been noticed in patients with ‘pre-frontal syndrome’ [5 ] ,  and has been 
previously modelled by Danchin and Changeux [7] and by Levine et al [8] with neural 
networks. It is interesting that the same effects appear in a natural way within the much 
simpler perceptron architecture which has not been pre-designed to model this phenomenon. 
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5. Conclusions 

We have analysed the problem of leaming a linearly separable rule drifting randomly with 
time, through the single presentation of examples. Lower bounds to the generalization errors 
are given. For low rule drift (or low synaptic noise) the saturation error increases as T‘. 
The exponent for passive learning can be improved from the Hebbian with optimal weight 
decay result of Biehl and Schwarze, z = i, to z = f ,  while z = 4 is achieved in the active 
learning strategy. For on-line leaming we obtained a relation between the generalization 
exponent x and the noise exponent z ,  l / x  = I/z - 2, if cl(T = 0) # 0. This conditon is 
true for a large class of algorithms, and a careful study of this will appear elsewhere. It 
will be interesting to check if this relation is also valid for iterated learning. 

These bounds inspire a realistic self-adaptive algorithm which, in order to assess the 
actual generalization abilty, needs a self-evaluating mechanism. The performance of this 
algorithm is studied numerically for slow drifts as well as for sudden changes of the rule, the 
so-called Wisconsin test. The algorithm approximates very well the optimal performance, 
does not require previous knowledge of the drift parameter and is robust to changing rule 
drifts. 

This algorithm belongs to the c l a s  which we have previously called expected stability 
algorithms [2], since the weight function depends on the expectation value of the stability of 
an example in the professor net as judged by the student. The Ieaming proceeds by giving 
higher weight to the suprising examples, that is, those with a high local field in the student 
net, which have been misclassified. This differentiated treatment of the examples is shared 
by other algorithms, but with a weight function independent of the leaming stage (ec). An 
important characteristic is that the optimal weight function depends on the generalization 
error, and this demands that the net be endowed with an extra feature, that is a self- 
evaluator mechanism. The failure of the Hebb algorithm in keeping information about 
temporal ordering leads to poor adaptability under changing rules or ‘persistence’ and lack 
of ‘recency’ information, which is similar to the behaviour of some quite complex neural 
nets [7,8] which have been specifically built to model ‘prefrontal‘ syndrome. 

The extension of this kind of results for multilayer nets would be of great interest 
both for the theoretical aspects as well as for their possible applications. We are presently 
working on these ideas and this will be the topic of future publications. 
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